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Figure 1. Our method performs precise depth-aware image editing at user-specified depth d. a) Given two input scenes and specified d,
our method seamlessly composite the foreground (depth < d) of one scene with the background of another. b) Given a background image,
an object image and a 2D bounding box, our method can realistically place the object at depth d, with appropriate scene occlusions.

Abstract

Diffusion models have transformed image editing but strug-
gle with precise depth-aware control, such as placing ob-
jects at a specified depth. Layered representations offer
fine-grained control by decomposing an image into sepa-
rate editable layers. However, existing methods simplisti-
cally represent a scene via a set of background and trans-
parent foreground layers while ignoring the scene geom-
etry - limiting their effectiveness for depth-aware editing.
We propose Depth-Guided Layer Decomposition - a layer-
ing method that decomposes an image into foreground and
background layers based on a user-specified depth value,
enabling precise depth-aware edits. We further propose
Feature Guided Layer Compositing - a zero-shot approach
for realistic layer compositing by leveraging generative pri-
ors from pretrained diffusion models. Specifically, we guide
the internal U-Net features to progressively fuse individual
layers into a composite latent at each denoising step. This
preserves the structure of individual layers while generat-
ing realistic outputs with appropriate color and lighting ad-
justments without a need for post-hoc harmonization mod-

*equal contribution.

els. We demonstrate our method on two key depth-aware
editing tasks: 1) scene compositing by blending the fore-
ground of one scene with the background of another at a
specified depth, and; 2) object insertion at a user-defined
depth. Our zero-shot approach achieves precise depth or-
dering and high-quality edits, surpassing specialized scene
compositing and object placement baselines, as validated
across benchmarks and user studies.

1. Introduction
Recent advancements in diffusion models [1, 2] have sig-
nificantly improved image editing [3–10]. Though these
approaches work well for coarse image modifications, such
as altering object appearance, adding attributes or changing
image style via text prompts, they lack the precise control
over image content that artists and designers require. Lay-
ered image representation offers finer control by decompos-
ing an image into editable layers, a widely used technique in
visual content editing workflows. While recent works have
explored layered generation with diffusion models [11–13],
their use in layered image editing is largely unexplored.

Current layering approaches [11, 14, 15] decompose
images into a background layer and multiple transparent



foreground layers each corresponding to a distinct object
(Fig. 2). This enables precise editing of existing objects,
such as removal, resizing, and translation within the im-
age plane via editing the individual layers. However, this
object-centric layering overlooks the spatial geometry of the
scene, including the depth of individual objects and their ar-
rangement in 3D space. As a result, they are incapable of
performing depth-aware editing, such as composing fore-
ground from a scene with background from another at a
specified depth (Fig. 1a)). Moreover, when composing lay-
ers from two different scenes, these methods require addi-
tional image harmonization models [16, 17] to adjust light-
ing and color for photorealistic outputs.

In this work, we propose a novel zero-shot depth-aware
editing framework that introduces Depth-Guided Layer
Decomposition (DeGLaD). Given an input image, its depth
map (from an off-the-shelf predictor [18]), and a user-
specified depth d, DeGLaD decomposes the image into
foreground (depth < d) and background (depth > d) layers
(Fig. 2) based on the scene depth (Fig. 2). This decom-
position enables precise depth-aware editing via indepen-
dent editing of each layer. For example, to composite two
scenes at specified depth d, the background layer from one
scene can be replaced with another. Similarly, a novel ob-
ject can be inserted at depth d by inpainting the object in the
background layer using off-the-shelf inpainting model [19]
and composite with the unedited foreground layer, ensuring
placement at intended depth. As providing a scalar depth
value can be challenging for the user, we offer an intuitive
top-view interface that allows users to specify d with a sin-
gle click (Suppl.Sec.B).

Directly compositing edited layers in image space leads
to unrealistic results, lacking proper lighting and color con-
sistency. To address this, we integrate DeGLaD in the la-
tent space of pretrained diffusion models, leveraging their
rich generative priors for photorealistic compositing. First,
we invert the input images in the diffusion latent space and
then apply DeGLaD to obtain latent depth layers. For the
seamless compositing of these layers, we propose Feature-
Guided Layer Compositing (FeatGLaC) - a training-free
method that gradually composites the edited layers by guid-
ing the diffusion features towards the target composition at
each denoising step, similar to classifier guidance [20]. This
progressive compositing approach preserves the structure of
individual layers while ensuring realistic compositing with
natural lighting and color consistency.

We evaluate our method on two novel depth-aware edit-
ing tasks: a) photorealistic compositing of scenes at a
specified depth with appropriate relighting, and b) insert-
ing a novel object at a precise depth. To benchmark these
new tasks, we introduce a dataset featuring diverse ob-
jects and background scenes. Our zero-shot method outper-
forms specialized baselines trained for object insertion and
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Figure 2. Existing layering method [14] decompose an image
into background and foreground object layers but disregard spa-
tial scene geometry, limiting their applicability for depth-aware
editing. In contrast, our Depth-Guided Layer Decomposition
(DeGLaD) decomposes a scene based on the scene depth and a
user-specified depth d, enabling precise depth-aware editing such
as inserting objects at a precise depth.

scene compositing, demonstrating superior depth awareness
and photorealistic compositing supported quantitatively and
with user studies. In summary, our key contributions are:
• Depth-Guided Layer Decomposition - a novel layering

method to decompose a given image into editable layers
using its depth map and a user-specified depth value.

• Feature-Guided Layer Compositing — a zero-shot
method that leverages pretrained diffusion models to pro-
gressively blend multiple layers with feature guidance,
ensuring photorealistic lighting and color harmonization.

• Downstream applications of depth-based layering in
novel depth-aware editing tasks - object insertion and
scene compositing at a user-specified depth.

• Depth Edit Benchmark - A benchmark dataset consisting
of diverse images with depth-aware editing annotations
for evaluation of the two depth-aware editing tasks.

2. Related Works
Layered Image Generation. Recent methods perform
large-scale diffusion model training on transparent layer
dataset to perform layered generation [11, 12, 21], facilitat-
ing transparent content for editing workflows. Other meth-
ods [13, 14, 22, 23] decompose images into layered fore-
ground and background representations or generate only
a transparent foreground [24] for compositing-based ed-
its. However, they lack depth-aware editing and are lim-
ited to individual object layers. PAIR-Diffusion [25] learns
object-centric features to compose multiple images using
scene segmentation maps, while [26] leverages a layered
latent representation for object movement within a scene.
Additionally, works on harmonization [17] and relight-
ing [16, 27, 28] use layered representations for scene com-
positing but rely on large-scale paired datasets.
Image Editing with Diffusion Models. Text-to-Image
models [1, 2, 29] are extensively used for image editing and



controlled image synthesis [3, 4, 30, 31]. A set of exist-
ing methods manipulate the cross-attention maps [3, 6, 32]
during inference to control the image layouts. These in-
clude swapping the attention maps [3, 32], or taking atten-
tion across the batch of images [33, 34]. Another set of
works explores the text conditioning space of the T2I model
to achieve more control [6, 35–37]. Others aim to find se-
mantic direction in latent space or the text space [38–40]
for editing. However, these approaches focus primarily on
appearance-based edits and lack precise 3D control.
3D editing with Generative Models. While diffusion mod-
els excel at generating realistic images, they struggle with
consistent 3D effects [41, 42]. To introduce 3D control,
some methods condition diffusion models on scene nor-
mals or depth maps [1, 43], while others train on large-scale
3D-annotated datasets, using 3D bounding boxes [44] or
geometric properties [45]. More recent approaches lever-
age generative priors from pretrained diffusion models for
3D-aware editing [31, 46–48]. Some lift 2D diffusion
features to 3D space via depth maps for direct 3D edit-
ing [31, 46], while others edit the inferred mesh [49] or
point cloud [47, 50] from a single image and refine the
rendered image with pretrained diffusion models as post-
processing. Another set of methods [51, 52], personalize
the diffusion models on multi-view images to achieve 3D
editing and view control for personalized object.
Object Insertion. Existing methods formulate object in-
sertion from a single image as an object inpainting task.
A widely used approach is to condition the diffusion mod-
els on object features extracted from an additional image
encoder, enabling object insertion within a specified 2D
box [19, 53–57]. Further, some approaches enhance real-
ism of the inserted object by implicitly modeling lighting
and shading via curating high-quality datasets [58]. How-
ever, these methods lack control over object placement at a
specific depth and always generate complete objects with-
out considering occlusions from the scene. In contrast, 3D-
based methods enable realistic object insertion [59] and 3D-
aware edits [60] but require multiple images to construct
accurate 3D representations such as NeRFs. Another ap-
proach for object insertion estimates floor planes and scene
lighting to place synthetic 3D assets [61], but obtaining
realistic 3D assets from a single image remains challeng-
ing. Unlike these methods, our approach enables realistic,
depth-aware object insertion using only a single object and
background image while considering occlusions.

3. Method
3.1. Preliminaries
Diffusion models generate images by iteratively denois-
ing a random noise sample. In the forward diffusion pro-
cess, image x0 is corrupted by sequentially adding stan-
dard Gaussian noise ϵ to obtain xt. A denoiser network

ϵθ is trained to estimate the added noise, conditioned on the
timestep and optional conditioning such as text. For gen-
erating images, the reverse diffusion process denoises the
random noise xT , with multiple passes through denoising
network ϵθ. To accelerate the diffusion models, Latent Dif-
fusion Models [1] take a two-stage approach where the in-
put image is first encoded into a lower dimensional latent
space of a pretrained variational autoencoder, and the dif-
fusion process is applied in the compressed latent space,
reducing the computational demands.
Guidance. Diffusion models generate images by iteratively
denoising a random noise sample. Classifier guidance [20]
provides a mechanism to steer this iterative sampling pro-
cess using a predefined energy function G. This enables
the ability to condition the generation during inference time
without a need for model retraining. For example, to gen-
erate class-conditioned images, the energy function as the
cross-entropy loss L between the pretrained classifier’s pre-
diction f(xt) and the given class y as G = L(f(xt, y)).
During generation, the predicted noise ϵθ is adjusted to min-
imize the classifier loss L by taking the loss gradient with
respect to xt, with λ as the classifier guidance weight as:

ϵ̃θ(xt, t) = ϵθ(xt, t) + λ∇xt
L(f(xt), y) (1)

Several recent guidance approaches achieve inference time
conditioning on sketch [62], layout [30, 63], features [31],
optical flow [64] and human skeleton [65].

3.2. Depth-Guided Layer Decomposition (DeGLaD)
Scene depth serves as an effective representation to model
the underlying scene geometry and enables enhanced con-
trol over 3D scene structure [31, 43]. Motivated by this,
we propose Depth-Guided Layer Decomposition - a depth-
based layering approach for precise depth-aware editing.
The requirements for DeGLaD are an input image x, its
corresponding depth map D (can be obtained from off-the-
shelf depth predictor [18]). Additionally, the user has to
specify a scalar depth value d, where the edit needs to be
performed. Given these inputs, we decompose the image
into foreground and background layers with corresponding
binary masks Mfg and Mbg, computed as follows:

Mfg(i, j) = I
(
D(i, j) < d

)
, Mbg(i, j) = I

(
D(i, j) ≥ d

)
, (2)

where i and j denotes the pixel coordinates, and I(·) is the indica-
tor function. The obtained layers can be edited independently and
recomposed for precise depth-aware editing. While we illustrate
decomposition at a single depth, our method naturally extends to
multiple depths by providing a set of depth values {d1, ..dk}, en-
abling multi-depth editing, such as composing multiple scenes or
iteratively inserting objects (Fig. 1).

3.3. Feature-Guided Layer Composition (FeatGLaC)
Directly compositing the obtained layers in the image space leads
to unnatural results, lacking color harmonization and proper light-
ing (Fig. 3). To address this, we integrate DeGLaD in the latent
space of pretrained diffusion models and progressively compose
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Figure 3. Ablation for compositing layers: a) Naively α com-
positing the layers in the image space (Image α-comp) results in
unnatural ’cut-paste’ artifacts without adjusting color and scene
lighting. b) Performing α compositing in the diffusion latent space
at t = τ (Eq.3) followed by denoising (Latent α-comp τ ) has
an inherent tradeoff. Compositing at an early stage of diffusion
(τ = 40) results in identity loss due to excessive denoising, and
compositing at a later stage (τ = 10) results in unnatural blending
similar to Image α-comp. Our diffusion feature guidance-based
layer compositing generates photorealistic composition while pre-
serving the structure and identity of individual images.

the layers during denoising to generate realistic outputs. We ex-
plain this approach using an example where the foreground layer
from scene xa (extracted by binary mask Ma

fg) is composed with
the background from scene xb. For composing foreground from
xa with background of xb, we define the background mask for
xb to be the same as that of xa, i.e., Mb

bg = Ma
bg. We start by

inverting xa and xb with null-text inversion [66] to obtain the cor-
responding latents za0:T and zb0:T.

Baseline. One straightforward approach is to first α-composite the
latents zaτ and zbτ at intermediate timestep τ to obtain a composite
intermediate latent zcτ :

zcτ = Ma
fg ∗ zaτ +Mb

bg ∗ zbτ (3)
where Ma

fg is downsampled to match the dimension of latent zt.
The composed latent zcτ is then denoised with the diffusion model
for the remaining T− τ timesteps for realistic blending of the
two layers [5]. Though this framework seems promising, it has an
inherent tradeoff between realistic blending with complex scene
effects and preserving layer identity, as shown in Fig. 3. A large τ
(close to clean image) does not provide enough freedom to recover
the complex scene effects with denoising, and a small τ (close
to noisy image) generates plausible composition but changes the
scene contents significantly.

Composition with guidance. Rather than directly α-compositing
the inverted latents, we introduce a more gradual fusion strategy
that incorporates feature guidance at each denoising step. We call
this approach Feature-Guided Layer Composition, FeatGLaC in
short. We start by initializing the composite latent zcT as the back-
ground latent zbT and iteratively denoise it with feature guidance,
similar to classifier guidance [20]. Following prior works [31, 62],
which demonstrate that the internal features of the denoising U-
Net are highly expressive and enable fine-grained control over gen-
eration, we guide these features towards the target composition to
achieve seamless blending. We denote the U-Net features as Ψi,t,
where i is the diffusion model layer index and t is the diffusion
timestep. At each timestep, we extract the features Ψa
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Figure 4. Overall framework for scene compositing: a) Given
an input foreground image xa and a user specified depth d, we
decompose the image with Depth-Guided Layer Decomposition
(DeGLaD) and obtain foreground Ma

fg and background Ma
bg

masks. b) We compose the foreground latent zat with background
latent zbt using the obtained mask with diffusion feature guidance.
We guide the features of the composite latent Ψc

i,t using the activa-
tions for foreground Ψa

i,t and background features Ψb
i,t and update

the composite latent zct for K iterations at each denoising step.

Ψc
i,t from zat , zbt and composite latent zct respectively. Next, we

define the diffusion guidance energy G for progressive composi-
tion of these layers.

Intuition: We force the foreground layer (fg) of Ψc
i,t to be close to

foreground layer of Ψa
i,t and the background layer (bg) of Ψc

i,t to
be close to the background layer of Ψb

i,t as shown in Fig. 4. This
is implemented by defining G =

∑
i

||Ma
fg ∗ (Ψa

i,t −Ψc
i,t)||2 + ||Mb

bg ∗ (Ψb
i,t −Ψc

i,t)||2 (4)

We compute the gradients of guidance energy G with respect to
composite latent zct and backpropagate them to update the next
sample prediction as z̃ct = zct −∇zct

G for K iterations at each de-
noising timestep. This gradual layer composition approach strikes
a good tradeoff in preserving layer identity and generating photo-
realistic compositions. Fig. 1 & 3.

Notably, the proposed FeatGLaC framework is model-
agnostic and can be integrated into any pretrained diffusion
model. We demonstrate its flexibility by applying it to a depth-
conditioned diffusion model for scene composition and an inpaint-
ing diffusion model for object insertion, leveraging their special-
ized editing capabilities for depth-aware tasks.

3.4. Application in Depth-Aware Editing
We implement layer decomposition with DeGLaD and compo-
sition with FeatGLaC to perform depth-aware scene compo-
sition in Sec. 3.4.1 and object insertion in Sec. 3.4.2. A de-
tailed algorithm of our method for both these tasks is provided
in Supp.Sec.A. requires users to specify a depth value d for the
scene where the edit needs to be performed, which may not be
user-friendly. To address this, we alternatively provide an intuitive
interface, as discussed in Supp.Sec.B that visualizes segmented
scene from a top-down view, allowing users to easily specify d
with a single user click.



3.4.1. Depth Aware Scene Composition
The goal of this task is to seamlessly compose the foreground of
one scene, xa, with the background of another, xb, at the user-
specified depth d. We first decompose the images into depth-based
layers using DeGLaD and compose the layers with FeatGLaC as
discussed in Sec. 3.2 & 3.3 and Fig. 2. To ensure structure preser-
vation of individual layers during composition, we incorporate
a pretrained depth-conditioned diffusion model [1] for guidance.
Specifically, we condition the model using an α-composited depth
map, obtained by blending Da (depth of xa) and Db (depth of
xb) with their respective foreground and background masks (Ma

fg,
Ma

bg). This composite depth input allows the model to maintain
the structure of individual layers during the composition.

3.4.2. Depth Aware Object Insertion
We introduce a novel task of realistically inserting a given object
x0 in an input scene x at a user-specified depth d and inside a
2D bounding box b. Existing approaches [19, 53, 54] can insert
a given object in the specified 2D bounding box but do not pro-
vide explicit depth-aware control during object insertion. To this
end, we lift an object insertion model H [19] and make it depth-
aware. We first perform null-text inversion [66] on x to obtain
latent z0:T and store corresponding diffusion U-Net features Ψi,t

for guidance. Next, we obtain the foreground (Mfg) and back-
ground (Mbg = 1 − Mfg) layers for the input scene x using
DeGLaD at specified depth d. The object insertion model H takes
input scene x, object image xo and 2D bounding box b as input
and iteratively denoises a edit latent zeT initialized from N (0, I)
to inpaint the object in the bounding box. To perform depth-aware
object insertion, we extract the features Ψe

i,t of edit latent zet from
H at each timestep t and apply FeatGLaC to compose with only
unedited foreground allowing the background layer to change.

Intuition. We force the foreground (depth < d) features Ψe
i,t of the

edit latent zet to be close to the foreground features Ψi,t of the in-
verted image latent zt at each denoising step. This is implemented
by defining the guidance energy G as:

G =
∑
i

||Mfg ∗ (Ψi,t −Ψe
i,t)||2 (5)

We use the above guidance loss to refine the intermediate edit la-
tent zet for K iterations at each denoising step. Empirically, re-
placing the foreground layer of zet with the foreground layer of
zt at an intermediate timestep τ , followed by the guidance update
for the remaining timesteps, yields more accurate object insertion
results. We hypothesize that this improves H’s ability to interpret
object depth, especially scene occlusions, leading to more seam-
less compositions (Fig. 6).

4. Experiments
We perform extensive experiments to evaluate our method for
depth-aware editing. In this section, we first discuss the imple-
mentation and dataset details, followed by experiments on scene
composition, object insertion, and ablation studies. Additional ex-
periment and dataset details are provided in the supp. document
We strongly encourage reviewing the attached project page (in-
dex.html) in supplementary.zip for high-resolution visual results.
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Figure 5. Depth-aware object insertion. Our method enables re-
alistically placing multiple objects at precise user specified depths.
Further our method can place the same object at multiple locations
and depths in a given scene.

4.1. Implementation Details
For scene composition, we use the depth-conditioned Stable Dif-
fusion v2-depth [1], and for object insertion, we use the Anydoor
inpainting model [19]. The guidance is applied to features from
the last and penultimate layers of the diffusion U-Net, which en-
hances edit plausibility, which is also shown in our ablations. For
scene composition, guidance is applied from timesteps 0 to 38,
updating the latent zct for K = 5 iterations per step. For object
insertion, guidance is given from timesteps 30 to 50, with the la-
tent zet updated for K = 3 iterations per step. Additionally, we
use Depth Anything [18] to obtain the depth for object insertion
and Zoedepth [67] for scene composition, as the depth-conditioned
model SD v2-depth is pretrained with metric depth map. We ex-
tracted captions of input scenes using captioning model [68] to
perform null-text inversion. Also, for scene composition, we com-
pose the captions of two input scenes to condition the diffusion
model during guided generation.

4.2. Dataset
Since we are the first to introduce the two depth-aware editing
tasks, no public dataset exists for their evaluation. To address this,
we curated the Depth Edit Benchmark - a dataset comprising two
subsets tailored for the extensive evaluation of depth-aware scene
composition and object insertion.

Object insertion. We gathered a collection of 490 scene-object
image pairs from the web. Each pair includes annotations for the
corresponding scene’s depth map, depth value d, where the object
can be plausibly placed, and a corresponding 2D bounding box for
object insertion. This dataset includes diverse objects from indoor
and outdoor environments, with possible occlusion for inserted ob-
jects to effectively assess depth-aware object insertion.

Scene composition. We curated a dataset with 2, 844 image pairs
with diverse foreground and background scenes, sourced from the
SSHarmonization dataset [69] and the web. The dataset covers



Inputs                                                    

Method2

Method4Ours

This is a 
good 
example

Kettle handle is 
distorted: change 
example

Slid on the 
monitor

All the results are equally 
good, change sample

Image MPI Anydoor LAMA+Anydoor         LAMA+PBE       Anydoor cutpaste  

Highly cluttered 
scene, remove

Distortion in 
background

Change scene

Reduce size Increase size

IP-Adapter PbE Anydoor                                                    Ours

Figure 6. Comparison for depth-aware object insertion: IP-
Adapter and PbE struggles to insert objects with consistent iden-
tity within an amodal bounding box. Anydoor achieves plausible
placement but generates artifacts along the mask border (marked
in red). Our method enables realistic object insertion while pre-
serving both object identity and scene consistency.

a broad range of indoor and outdoor environments with varying
lighting, composition, and appearance. Each image is annotated
with depth maps (extracted from [67]) and the depth value d for
each foreground scene for plausible scene composition. Addition-
ally, we generate text prompts using an off-the-shelf image cap-
tioning model [68].

4.3. Object Insertion
To our knowledge, we are the first to perform depth-aware ob-
ject insertion using only a single object and background image;
hence, we compare with reference-based inpainting baselines. We
use state-of-the-art reference conditioned inpainting methods IP-
Adapter [53], Paint by example (PbE) [54], and Anydoor [19] to
inpaint the given object in a scene in a specified bounding box.
These methods take a bounding box as input and place the ob-
ject without accounting for occlusions. For a fair comparison, we
adapt them for depth-aware placement by using the foreground
layer mask to occlude the bounding box with overlapping objects
(Fig. 6), resulting in an amodal bounding box mask. This will
preserve the foreground regions during inpainting and give us the
illusion that the object is placed behind other objects.

Method DINO-sim ↑ KID ↓ ∆ depth ↓ Clip-sim ↑
IP-Adapter [53] 0.244 5.3 9.366 27.81

PbE [54] 0.273 4.9 6.733 60.12
Anydoor [19] 0.507 4.9 3.176 83.23

Ours 0.545 4.8 2.989 84.86

Table 1. Depth-Aware object insertion comparison. KID and ∆
depth are reported in x102 units.

Metrics. We evaluate object insertion method for object identity,
realism of the output, correctness of the inserted object, and depth
consistency for the inserted object. We use DINO [70] feature sim-
ilarity (DINO-sim) between the generated object in the bounding

box and the reference object to measure identity preservation. To
measure image realism, we compute KID [71] against COCO [72]
as our evaluation set is relatively smaller to compute FID. To
evaluate whether the object is actually placed, we use CLIP [73]
similarity (CLIP-sim) between ‘a photo of object-name’ and the
cropped image from the generated image. If the object is correctly
generated, the CLIP score should be higher. To assess depth con-
sistency, we compute the discrepancy between the predicted object
depth and the user-specified input depth. We estimate the depth of
the generated image (using [18]), and compute the mean object
depth of the object segment (obtained with SAM [74]). We re-
port normalized ∆ depth across the dataset, where lower values
indicate more consistent depth-aware placement.

Analysis. We present the results for depth-aware object insertion
in Fig. 6, and Tab. 1. The reference-conditioned inpainting mod-
els, such as the IP-adapter and Paint-by-example (PbE), struggle
to generate accurate objects in the amodal mask as they have been
trained to primarily inpaint unoccluded objects with 2D bounding
boxes. This is quantified with a poor CLIP-sim metric in Tab. 1.
Anydoor is able to generate consistent objects; however, it gen-
erates significant border artifacts (marked in red), resulting in an
unnatural composition. Our approach generates realistic composi-
tions with accurate object insertion (highest Clip-sim) and superior
identity preservation (highest Dino-sim) as compared to all the ob-
ject insertion baselines. Further, the object is naturally placed at
an accurate depth, as evident with lower ∆ depth scores. Note
that the identity preservation of the object is limited by the base
inpainting model and is not a limitation of our guidance method.
However, we can improve the identity by doing a post-processing
step; experiments are in the Supp.Sec.F1 document.
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Figure 7. Depth consistency in object insertion: The depth map
after object insertion appears visually consistent, confirming the
object’s placement accurately within the scene geometry.

Inserted objects are consistent with input depth. To analyze
the depth consistency of the inserted object, we visualize the depth
map from [75] after object insertion in Fig. 7. The visualization
confirms the object is places at accurate scene depth between the
foreground and background scene objects.

4.4. Scene Composition
We compare our method with the following baselines: a) DeGLaD
Image - We perform DeGLaD in the image space and compose
the edited image layers with α compositing. Further, we perform
image harmonization using [17] as post-processing for realistic
blending. b) DeGLaD + SDEdit [5] - We perform SDEdit (noise
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Figure 8. Depth-aware scene compositing. a) Our method seam-
lessly blends input scenes at a specified depth with accurate color
and lighting adjustments. b) Additionally, our method enables
scene relighting by compositing a foreground object with a plain
background featuring strong lighting effects.

and denoise with diffusion model) on the output of DeGLaD com-
position in the image space for generating realistic compositions.
c) PAIR Diffusion [25] allows for localized control during gener-
ation by copying content from a masked reference image. We use
the layer masks (Mfg and Mbg) to segment out the foreground
and background regions and then pass desired reference scene im-
ages to PAIR Diffusion for generating the composed scene.

Metrics. We measure the visual quality of the composed scene
and identity (structure and appearance) preservation of the fore-
ground and background. We report FID with the COCO dataset to
quantify the realism of the generated image. To evaluate

Method LPIPS ↓ FID ↓
Pair-Diffusion 0.45 140.54
DeGLAD Image 0.036 132.6

DeGLaD + SDEdit 0.395 106.24
DeGLaD Diff 0.263 123.32

Table 2. Scene compositing comparison

identity preserva-
tion, we report the
average LPIPS
distance between
the background
and the fore-
ground region of the composite image with the input images. For
realistic scene composition, both LPIPS and FID should be low,
indicating superior identity preservation and realism.

Analysis. We present our results and comparisons in Fig. 9 and
Tab. 2. DeGLaD Image achieves harmonization of the foreground
to improve blending; however, it still struggles with cut-pasting
appearance (e.g., bed scene) when the layered mask is not perfect,
leading to unrealistic generation (inferior FID score). DeGLaD +
SDEdit and PAIR-diffusion change the scene structure while gen-
erating consistent images in some examples. Our method gener-
ates photorealistic depth-aware scene composition with accurate

scene illumination while preserving the scene structure. Notably,
our method is robust to minor errors in the layered mask, as shown
in Fig. 9 bed example. Additionally, our method can realistically
relight the scene by providing different sky backgrounds.
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Figure 9. Comparison for scene compositing. DeGLaD Im-
age result in cut-pasting artifacts leading to unnatural outputs.
DeGLaD+SDEdit and Pair Diffusion generate unnatural composi-
tions and distort the identity in some cases. Our metho realistically
composite the two scenes in a depth-aware manner with consistent
intra-scene illumination.
Composed scene follows accurate depth ordering. To analyze
the depth consistency, we visualize the histogram of the input and
the output scene in Fig. 10, which shows our method preserves
the distribution of depth present in the foreground and background
scene even during composition.
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Figure 10. Depth consistency in scene editing: The initial depth
regions in the composite image align with the foreground depth
maps, while the later regions correspond to the background depth
maps, indicating the preserved depth distribution.

4.5. User study
Due to the unavailability of well-established benchmarks for the
task, we perform a user study to evaluate our approach across mul-
tiple aspects. We perform a user study to evaluate our method for
depth-aware scene editing. We evaluate object insertion for the
realism of the placement, identity preservation, and depth con-
sistency. For the task of scene composition, we evaluate for the
realism of the composition and depth consistency. The study was
performed on 15 source images for each task, and 40 volunteers



participated with varied expertise in image editing. We created
60 image pairs for object insertion and 40 pairs for scene com-
position, with each pair consisting of our generated output and a
randomly sampled baseline. We divide this dataset into groups of
20 image pairs for separate analysis on each editing goal. Each
user compared 20 pairs for each of the goals for the two tasks.
The order of image pairs and the methods within each pair were
randomized. The results of the user study are present in Fig. 11

Image MPI + H

SDEdit Pair Diffusion

Which is more 
realistic?

Is the scene composed at 
the intended depth?

Scene Composition User Study

IP Adapter AnydoorOurs

Which is more 
realistic?

Which has better 
replication of identity of 
object and background?

Is the object placed at the 
intended depth?

Object Placement User Study

Paint by Example
Ours

Figure 11. User study compiled from 40 responses. Our object
insertion method is better than the baselines in realism, identity
preservation and depth consistency. Similarly, for scene composit-
ing, our approach surpasses the baselines in both realism and depth
consistency, with image DeGLaD Image yielding comparable re-
sults but it suffers from image cut-pasting artifacts (Fig. 9).
Object insertion. Our method significantly outperforms all base-
lines in terms of realism, identity preservation, and depth consis-
tency. PbE and IP-adapter perform poorly across all three goals,
indicating the challenge of depth-aware placement task. Our ap-
proach excels in depth consistency metrics, indicating that our
method effectively performs depth-aware editing while producing
highly realistic images. This can also be seen while visualising the
generated image depth map Fig. 11 where the object depth map is
consistent with the surrounding.
Scene composition. As indicated in the user study, DeGLaD Im-
age performs comparably to our approach for both goals. How-
ever, the harmonization model used in DeGLaD baseline, is specif-
ically trained on a large-scale dataset for the task of blending ob-
jects in the background scene whereas our method is zero-shot.
Further, applieng DeGLaD in the image space suffers with cut-
paste artifacts as shown in Fig. 9. As compared to all the other
scene compositing baselines, our approach achieves significantly
better performance.

4.6. Ablations
We ablate over the design choices for scene compositing in Fig. 12.
We follow the same guidance parameters for the object insertion
task as well. Additional quantitative ablations are provided in the
Supp.Sec.C - Tab.1 & 2.

Guidance Timesteps. We ablate over the timestep range from
0 − 50 for applying the FeatGLaC guidance. Guiding only for
small timesteps (0−20) results in significant structure changes for
the foreground and background scenes. On the contrary, providing
guidance for all the timesteps preserves the structure but leads to
unnatural composition (lighting mismatch). We found that guid-
ing until an intermediate range of timesteps (0-38) and allowing
the image to denoise freely for the remaining steps strikes a good
balance, resulting in realistic compositions.

Guidance Layers. We ablate over the U-Net decoder features
used to calculate FeatGLaC guidance loss, and using all the de-

G
u

id
an

ce
 T

im
es

te
p

s

t=0-10

t=0-20

G
u

id
an

ce
 L

ay
er

s

2 & 3Only 2

2 and 3

G
u

id
an

ce
 w

ei
gh

t

λ
 
= 0.75 λ

 
= 1.00

Only 3

t=0-30 t=0-38 t=0-50

λ=0.25 λ=0.5

Only 1

All

This one

N
o

 g
u

id
an

ce

Latent MPI (t=10) t 
 
= 20 t 

 
= 30 t 

 
= 40 Ours

Figure 12. Ablation for scene compositing guidance parameters

coder layers for guidance results in significant artifacts. We ob-
serve that guidance with the first decoder layers can significantly
hurt the generation. Finally, we achieve a combination of layer 3
(weight 8.5) and layer 2 (weight 0.2) works well in most cases.
Using only one of these layers resulted in subpar compositions.

Guidance weight. After finalizing the layers to be used for
FeatGLaC guidance, we tried different weights for the guidance
factor. Specifically, we ablate over a guidance multiplier λ for
foreground guidance. Having a smaller λ results in generating
only a background region, we achieve a good composition with
λ = 1. Notably, λ is also a control parameter that a user uses to
control the effect of the background on the foreground scene.

5. Conclusion and Discussion
Limitations. While our approach is highly effective, it has some
limitations. Since our method builds on pretrained diffusion mod-
els, it inherits their biases. For object insertion, we rely on an in-
painting model that may distort object identity in complex cases,
such as objects with intricate textures (Fig. 13). Integrating the ad-
vancements in recent inpainting models can improve the identity
in such cases. Additionally, our guidance mechanism involves op-
timization at each denoising step, increasing computational cost.

Figure 13. Failure cases.

Conclusion. In this
work, we propose a
zero-shot framework
for depth-aware
image editing. We
introduce a novel
depth-based layer-
ing approach that
decomposes an image based on a user-specified depth value,
enabling precise depth control. Additionally, we present a
layer composition method that progressively blends layers using
diffusion feature guidance at each denoising step, ensuring
realistic layer composition. We demonstrate the effectiveness of
our approach on two novel tasks: depth-aware object insertion
and scene composition, achieving highly plausible edits with
accurate depth control. Our work offers a fresh perspective on
image layering and its applications in depth-aware editing.
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