
MonoPlace3D: Learning 3D-Aware Object Placement for 3D Monocular
Detection

Rishubh Parihar* Srinjay Sarkar∗ Sarthak Vora∗ Jogendra Nath Kundu R. Venkatesh Babu
IISc Bangalore

Abstract

Current monocular 3D detectors are held back by the lim-
ited diversity and scale of real-world datasets. While data
augmentation certainly helps, it’s particularly difficult to
generate realistic scene-aware augmented data for outdoor
settings. Most current approaches to synthetic data genera-
tion focus on realistic object appearance through improved
rendering techniques. However, we show that where and
how objects are positioned is just as crucial for training ef-
fective 3D monocular detectors. The key obstacle lies in au-
tomatically determining realistic object placement parame-
ters - including position, dimensions, and directional align-
ment when introducing synthetic objects into actual scenes.
To address this, we introduce MonoPlace3D, a novel system
that considers the 3D scene content to create realistic aug-
mentations. Specifically, given a background scene, Mono-
Place3D learns a distribution over plausible 3D bound-
ing boxes. Subsequently, we render realistic objects and
place them according to the locations sampled from the
learned distribution. Our comprehensive evaluation on two
standard datasets KITTI and NuScenes, demonstrates that
MonoPlace3D significantly improves the accuracy of mul-
tiple existing monocular 3D detectors while being highly
data efficient. project page

1. Introduction
Monocular 3D object detection has rapidly progressed re-
cently, enabling its use in autonomous navigation and
robotics [18, 32]. However, the performance of 3D detec-
tors relies heavily on the quantity and quality of the training
dataset. Given the considerable effort and time required to
curate extensive, real-world 3D-annotated datasets, special-
ized data augmentation for 3D object detection has emerged
as a promising direction.

However designing realistic augmentations for 3D tasks,
is non-trivial, as the generated augmentations must adhere
to the physical constraints of the real world, such as main-
taining 3D geometric consistency and handling collisions.
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Figure 1. a) We compare augmentations from our learned place-
ment with heuristic-based placements from Lift3D [22]. In our
augmentations, vehicles follow the lane orientations and are placed
appropriately. b) These realistic augmentations significantly im-
prove the 3D detection performance (KITTI [6] val set, (easy)).
Notably, we achieve detection performance comparable to that of
the fully labeled dataset using only 50% of the dataset.

Existing techniques [14, 25] for 3D augmentation use rel-
atively simple heuristics for placing synthetic objects in an
input scene. For instance, in the context of road scenes,
a recent approach [22] generates realistic cars and places
them on the segmented road region. However, such heuris-
tics result in highly unnatural scene augmentations (Fig. 1),
resulting in a marginal improvement in 3D detection per-
formance. In this work, we ask the following two crucial
questions: (1) What key factors are essential for generat-
ing realistic augmentations to improve monocular 3D ob-
ject detection?, and (2) How can these factors be integrated
to generate effective scene-aware augmentations?

For the first question, we discover two critical factors
responsible for generating effective 3D augmentations:
1. Object Placement: Plausible placement of augmented
objects, with appropriate object placement (location, scale,
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and orientation), is essential for rendering realistic scene
augmentations. For instance, in road scenes, a car should
be placed on the road, be of appropriate size based on
the distance from the camera, and follow the lane orienta-
tion. Augmentations that respect such physical constraints
generalize better to real scenes by faithfully modelling the
true distribution of the vehicles in the real world. To give
an example of how such an augmentation looks, we com-
pare our proposed augmentation approach against heuristic-
based placement from Lift3D [22] in Fig. 1. Given the
same rendering, our generation looks much more plausi-
ble regarding car placement and orientation compared to the
baseline approach. Notably, when used for object detection
training, our approach leads to significantly greater perfor-
mance improvement, making the detector not only perfor-
mant, but also highly data efficient (refer Fig. 1c)

2. Object Appearance: For 3D augmentation, it is desired
that the generated objects exhibit realism and seamlessly in-
tegrate with the background to preserve visual consistency.
This, in turn, minimizes the domain disparity between real
and augmented data. Existing augmentation methods for
3D detection [14, 22, 25] primarily focus on the object ap-
pearance. This limits their ability to exploit the full potential
of the data augmentations for 3D detection.

To address both these factors, we propose Mono-
Place3D, a novel scene-aware augmentation method that
generates effective 3D augmentations, as shown in Fig. 1.
For plausible object placement, we train a 3D Scene-Aware
Placement Network (SA-PlaceNet), which maps a given
scene image to a distribution of plausible 3D bounding
boxes. It learns realistic object placements that adhere to
the physical rules of road scenes, facilitating sampling of
diverse and plausible 3D bounding boxes (see Fig. 1a). For
training this network, we consider existing 3D detection
datasets, which typically contain only a limited number
of objects per scene, resulting in a sparse training signal.
Therefore, to enable dense placement prediction, we intro-
duce novel modules based on (1) geometric augmentations
of 3D boxes, along with (2) modeling of a continuous dis-
tribution of 3D boxes.

For realistic object appearance, we propose a rendering
pipeline that leverages synthetic 3D assets and an image-
to-image translation model. We translate the synthetic ren-
derings into a realistic version using ControlNet [53](see
Fig. 1b) and blend them with the background to get final
augmentations. This allows us to utilize amateur-quality 3D
assets and transform them into diverse, highly realistic car
renderings that resemble real-world scenes.

Our two-stage augmentation approach is highly effec-
tive and modular, allowing seamless integration with ad-
vancements in placement and rendering for enhancing 3D
object detection datasets. Using our augmentation method
on popular 3D detection datasets led to significant improve-

ments over the prior baselines and set a new state-of-the-art
monocular detection benchmark. Notably, as shown in Fig-
ure 1, using only 40% of the real training data and our 3D
augmentations outperforms a model that is trained on the
complete data without any 3D augmentations. Through ex-
tensive ablation studies, we thoroughly analyze the role of
different components and their effect on detection perfor-
mance. We summarize our contributions below:
1. We identify the critical role of 3D-aware object place-

ment and realistic appearance for generating effective
scene augmentations for 3D object detection.

2. We propose MonoPlace3D, a novel approach to generate
plausible 3D augmentations for road scenes by realisti-
cally placing objects following scene grammar.

3. We demonstrate the effectiveness of the proposed aug-
mentations on multiple 3D detection datasets and detec-
tor architectures with significant gains in performance as
well as data efficiency.

2. Related Work
Object Placement. There are numerous works [1, 35, 49,
54, 60] which aim to predict object placement by learning
a transformation or the bounding box parameters directly
for a given background image. A set of works [35, 49]
learns the distribution of indoor synthetic objects. Another
set of works [20, 21, 34, 44, 54] learns the plausible loca-
tions for humans and other outdoor objects in a 2D man-
ner. Few works aim to learn the arrangement conditioned
on the scene-graph [19, 31, 52]. Similarly, another set of
works [21, 44, 54] train a deep network adversarially in or-
der to learn plausible 2D bounding box locations. Similarly,
ST-GAN [26] learns to predict the geometric transforma-
tion of a bounding box in the given scene using adversarial
training. [24] uses a variational autoencoder to predict a
plausible location heatmap over the scene but is limited to
placement in restricted indoor environments.
Monocular Object Detection. The current monocular
3D detection methods can be grouped as image-based or
pseudo-lidar-based. Image-based detectors [2, 27, 28, 33,
37, 41, 43, 47, 56] estimate the 3D bounding box informa-
tion for an object from a single RGB image. Due to the lack
of depth information, these methods rely on geometric con-
sistency in order to predict the class and the location of the
object. Some works [23, 28, 32] use the prediction of key
points of 3D bounding boxes as an intermediate task in or-
der to improve it’s performance on 3D monocular detection.
In this work, we aim to improve the performance of image-
based monocular detection models since RGB images are
the most commonly used modality and easy to acquire with
low acquisition costs, unlike LIDAR and depth sensors.
Scene Data Augmentation. Multiple works use 2D data
augmentation techniques to improve the performance of
perception tasks [40]. However, these augmentations can-



not be lifted directly to 3D without violating the geomet-
ric constraints. To alleviate this problem, a recent method
augments the training dataset for the task of 3D monocu-
lar detection [9, 12, 22, 25, 45]. One approach is to copy-
paste cars from an archived dataset by considering the ef-
fect of 3D scene geometry, such as the scale and pose of
the car [25]. Another approach is to model a synthetic ur-
ban scene from real-world datasets [9]. On the contrary,
Lift3D [22] learns an object-centric neural radiance field
to generate realistic 3D cars with GAN-augmented views
and [45] learns a radiance field for the full 3D scene.
Another set of approaches fully generates realistic multi-
view scenes with diffusion models for generating realistic
scenes [11, 13, 48, 50]. All these methods use heuristics
such as lane segments to place cars; however, we aim to
learn the distribution over car locations, scale, and orienta-
tion from the real-world object detection dataset.

3. Method

In this section, we first explain why it’s important to have
specialized methods for creating realistic scene-based aug-
mentations for 3D detection. Then, we delve into the details
of our unique approach to 3D augmentation.

Insight-1: Unlike the object-based augmentations suitable
for broad image classification tasks, enhancing structured
tasks as 3D object detection requires careful considera-
tion of object-background and object-object interactions for
generation of plausible scene-based augmentations.

Remarks: Synthetic object-based augmentation for image
classification typically involves placing objects on any suit-
able background. This method may not always respect the
interaction between the object and the background, its im-
pact on the classification task remains minimal. In contrast,
for scene-based augmentation, which is crucial in tasks like
3D detection, the interactions between objects and back-
grounds, as well as between objects, becomes pivotal. For
example, implausible placements such as a car in a sky
background, two cars occluding each other’s 3D volume,
or a car-oriented perpendicular to lanes on the road, need
to be avoided. While one might argue that random place-
ment could aid in a 3D object detection task by helping the
model distinguish objects from the background, empirical
evidence suggests otherwise. Hence, it’s crucial to devise
a placement-based augmentation method that respects the
scene-prior, thereby instilling this understanding into the
detector model during training.

Insight-2: The distribution of augmented samples for a
given real sample xr, denoted as q(xaug|xr), can be en-
hanced by better scene-prior modeling; this leads to aug-
mented scenes that closely align with the real distribution,
fostering a robust model that is resilient to failures and can
achieve superior performance with fewer real samples.

Remarks: The equation q(xaug|xr) =
q(xaug|z,xr)q(z|xr) represents the distribution of
augmented samples for a given real sample xr. Here,
q(x|z,xr) represents a pipeline that generates the aug-
mented scene image upon applying an effective placement-
based augmentation. Here, q(z|xr) denotes the scene-prior
related latent factor z given the real image. This factor can
model the distribution of plausible location, orientation,
and scale to place objects given the scene layout. Improved
modeling of the scene prior ensures that the augmented
scene closely matches the real distribution. Training
with such augmentations imbues the model with a strong
understanding of the scene prior, enhancing its robustness
and reliability. We demonstrate that this strategy enables
efficient training, yielding superior performance with fewer
real samples compared to the baseline.

Approach overview. Our method for 3D augmentation
consists of two stages. First, we train the placement model
that maps a monocular RGB image to a distribution over
plausible 3D bounding boxes (Sec. 3.1). Subsequently, we
sample a set of 3D bounding boxes from this distribution to
place cars. In the second stage, we render realistic cars fol-
lowing the sampled 3D bounding box and blend them with
the background road scene. (Sec. 3.2).

3.1. Scene-aware Plausible 3D Placement
Realistic 3D placement in road scenes is extremely chal-
lenging due to the high diversity in the scene layouts and
underlying grammatical rules of the road scenes (Sec.1).
Existing methods use simple heuristic placement [22] based
on the road segmentation unable to model these complexi-
ties and hence result in unnatural augmentations (Fig. 1).
We propose a data-driven approach to learn the real-world
placement distribution by training a Scene-Aware Place-
ment Network (SA-PlaceNet), that maps a given image to
the distribution of plausible 3D bounding boxes.

Learning such a distribution requires dense supervision
about object location, scale, and orientation for each 3D
point in space. Having such a dense annotated real dataset
is impractical and can only be generated in a controlled
synthetic setting that does not generalize to the real world.
Hence, we take an alternate approach to learn the 3D bound-
ing box distribution from an existing 3D object detection
dataset. Object detection datasets only provide informa-
tion on where cars are located but not where they could be.
To mitigate this, we inpaint the vehicles from the scene to
generate a paired image dataset with/without the vehicles.
However, detection datasets have only a few vehicles in
each scene, which provides only sparse signals for plausible
3D bounding boxes. Directly training with such a dataset
will lead to overfitting and the model learns the sparse point
estimate of locations as each scene has only a few car lo-
cations in the ground truth. To truly learn the underlying
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Figure 2. a) SA-PlaceNet Architecture: Given an input background image and corresponding depth to predict the means of a multi-
dimensional Gaussian distribution over 3D bounding boxes. 3D bounding boxes are sampled from each of these Gaussian to compute the
training loss. b) Geometry-aware augmentation in BEV (Birds Eye View). For a given source car location (bloc), we first find K nearest
neighbors with the same orientation and augment the location to b̃loc by interpolating with neighboring locations nloc (Alg.1)

distribution of 3D bounding boxes, we propose two novel
modules during training of placement network. Geometry
aware augmentation and predicting distribution over 3D
bounding box instead of a single estimate. The proposed
modules enable diverse placements for a given scene that
follow the underlying rules of the road scene.

The complete architecture for placement is shown in
Fig. 2a. We build SA-PlaceNet using the backbone of Mon-
oDTR [18]. MonoDTR is designed to perform monocular
3D object detection and is trained with auxiliary depth su-
pervision. However, depth is not required during inference.
We adapt the architecture of MonoDTR to learn the map-
ping from background road images I to a set of 3D bound-
ing boxes B. Following [18], we define bounding box b ∈
B as 8 dimensional vector b = [bx, by, bz, bh, bw, bl, bθ, bα],
where (bx, by, bz) are 3D locations, (bh, bw, bl) are height,
width, and length of the box, and bθ and bα are orienta-
tion angles. Note that bα can be computed deterministically
from bθ and hence we have only 7 variables defining a given
bounding box. As a convention, we consider the xz plane
as the road plane.
Dataset preparation. There is no existing real-world
dataset that provides plausible placement annotations for
a given road scene. Instead, we take advantage of the
KITTI [15] dataset with 3D object detection annotations.
We preprocess the dataset by inpainting the foreground cars
in the scene using off-the-shelf inpainting [38]. Through
this process, we obtain an image dataset (I) with no cars on
the road and a set of corresponding 3D bounding boxes (B).
Next, we obtain depth images Id for the inpainted images
using [36]. The obtained paired dataset, D = {I, Id,B}, is
used to train the SA-PlaceNet.

3.1.1. Geometry aware augmentation
Training SA-PlaceNet directly with the paired dataset D
could easily learn a mapping to sparse 3D locations where

Algorithm 1 Geometry-aware augmentation procedure
1. Input:

query box: b = [bx, by, bz, bh, bw, bl, bθ, bα] where bloc =
(bx, by, bz)
number of neighbors: K
radius of interpolation: r
amount of jitter: dj

orientation threshold: ϵθ
2. Sample K neighbors {ni}K1 ∈ B, s.t.

||ni
loc − bloc||2 < r & |ni

θ − bθ| < ϵθ (1)
3. If there are no neighbours i.e K = 0, then do

bx ← bx + dx bz ← bz + dz (2)

where dz > 2dx and dx, dz ∈ U(0, dj)
end If

4. Else do
Generate the augmented location b̃loc = (b̃x, b̃y, b̃z) using
Eq. 7
end Else

5. Output : Augmented bounding box parameters b̃ :
[b̃x, b̃y, b̃z, bh, bw, bl, bθ, bα]

real cars were present before inpainting. Additionally, the
model can cheat by using the inpainting artifacts to pre-
dict cars at the source location. To overcome these limita-
tions, we propose geometry-aware augmentation G in the
3D bounding box space. We build on the intuition that
the regions’ neighboring ground truth car locations are also
plausible for placement. The augmentation G transforms
the ground truth bounding box b ∈ B of a car, located
at bloc = (bx, by, bz) into a plausible neighboring box
b̃ = G(b) located at b̃loc = (b̃x, b̃y, b̃z) shown in Fig. 2b.
The detailed algorithm for geometry-aware augmentation is
given in detail in Alg.1. Specifically, we first find a set of
K neighboring car boxes {ni}i=K

i=1 to the given car b. We
consider ni as the neighbor of b if ||ni

loc − bloc||2 < r and
|ni

θ − bθ| < ϵθ, for a given threshold r and ϵθ. We assume
the selected K nearest cars will be in the same lane and
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follow similar orientations. To augment the location bloc,
we take a convex combination of neighboring locations ni

loc

and bloc and obtain a location b̃loc.

b̃loc = λ0 ∗ bloc +
k∑

i=1

λi ∗ ni
loc (3)

where
∑

i λi = 1, λi ≥ 0 are hyperparameters randomly
sampled for each ground truth box b. This transforma-
tion enables us to span a large region of plausible locations
during training, hence enabling diverse placement locations
during inference for each scene. If a car doesn’t have any
neighboring cars, we apply a uniform jitter along the length
and a smaller jitter along the width of the car bounding box.

3.1.2. Distribution over 3D bounding boxes
Geometry-aware augmentation enables the generation of di-
verse placement locations, but it learns a direct mapping
from the input image to a point estimate of bounding boxes.
To learn a continuous representation in the output space, we
map the input image to the distribution of 3D boxes. This
improves the coverage of plausible locations and enables di-
verse bounding box sampling from a predicted set of mean
boxes. Specifically, we approximate each predicted bound-
ing box b as a multi-dimensional Gaussian distribution with
mean µb and a fixed covariance matrix as αI , where α is
used to control the spread as shown in Fig. 2a. We em-
pirically observed that having a fixed covariance improves
training stability. Having a higher α value results in strong
augmentations, where the sampled car is far away from the
mean location, resulting in a weaker training signal. During
the forward pass, the SA-PlaceNet predicts mean bounding
box parameters µb. To sample a box b̂, we first sample
ϵ ∈ N (0, I) and use the reparametrization trick as follows:

b̂ = µb + ϵ ∗ αI (4)

3.1.3. SA-PlaceNet Training
We train SA-PlaceNet with the acquired paired dataset D =
{I, Id,B}, consisting of inpainted background image (I),

inpainted depth image (Id) and the ground truth 3D bound-
ing boxes (B). Following [18], we train the model with Lcls

for objectness and class scores, Ldep for depth supervision,
and Lreg for bounding box regression.The proposed mod-
ules for geometry-aware augmentation and learning distri-
bution over 3D bounding boxes can be easily integrated into
a modified version of the regression loss Lm

reg as discussed
below. The total loss is then defined as:

L = Lcls + Lm
reg + Ldep (5)

For a given ground-truth bounding box parameter b, we
first augment it using geometry-aware augmentation fol-
lowing Eq. (7) to obtain modified bounding box parameters
b̃ = G(b). To capture the distribution of 3D boxes, we pre-
dict a mean bounding box parameter µb instead of a point
estimate of the box parameters and randomly sample a new
bounding box b̂ using the reparameterization trick outlined
in Eq. (4). Subsequently, we compute the modified regres-
sion loss between the model prediction µb and the ground
truth box b as follows:

Lm
reg(µb,b) = Lreg(b̂, b̃) (6)

3.2. What to place? Rendering cars
We generate realistic scenes by selecting cars and rendering
them within the projected 3D coordinates of the predicted
location, as shown in Fig. 3. To accurately render a car
based on 3D bounding box parameters, we utilize 3D car
assets from ShapeNet [5] that can be adjusted through ori-
entation and scale transformations. Upon acquiring the 3D
bounding box predictions, our rendering step entails sam-
pling cars from the ShapeNet. Subsequently, the car model
undergoes rotation according to the 3D observation angle of
the object before positioning it within the designated scene.
We separately render car shadows with predefined lighting
in the rendering environment, following [7]. The rendered
ShapeNet car images, although following the 3D bounding
boxes, look unrealistic when pasted into the scene (Fig. 6,
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Figure 4. Given an input source image, we plot the heatmaps of
the mean objectness score at each pixel location. The generated
heatmaps span a large region on the road with plausible locations
of objects. Next, we show samples of bounding boxes and realistic
renderings of cars in the scene.

row-2). To resolve this, we leverage the advances in condi-
tional generation using text-to-image models.

For the generated synthetic car images, we apply an
edge detector to obtain an edge map. The edge map pre-
serves the car’s structure and still follows the same orien-
tation and scale as the original car. Next, we use edge-
conditioned text-to-image diffusion model ControlNet [53]
to render a realistic car using the prompt ‘A realistic car
on the street.’ We further finetune the backbone diffusion
model in ControlNet using LoRA [17] on a subset of ‘car’
images from the KITTI dataset. This enables us to gen-
erate natural-looking versions of cars that blend well with
the background scene (Fig. 6). As ControlNet enables di-
verse generations from the same edge image, we can gen-
erate multiple renderings of cars from the edge map of a
single ShapeNet car. This enables the generation of many
diverse cars from a small, fixed set of 3D assets. The gen-
erated renderings look realistic and substantially boost ob-
ject detection performance, as shown in Tab. We believe,
the proposed approach of using a few 3D assets with con-
ditional text-to-image models is promising and can be ap-
plied to generate diverse 3D augmentations for other tasks
as well. Apart from the proposed rendering technique, we
also experiment directly placing ShapeNet [5] and render-
ings from Lift3D [22], which is a generative radiance field
approach that generates realistic 3D car assets.

4. Experiments

In this section, we present results for 3D-aware placement
(Sec. 4.1) and car renderings (Sec. 4.2). Next, we present
results for 3D detection trained with our generated augmen-
tations (Sec. 4.3). We show additional results for monocular
3D detection on indoor SUNRGBD [58] dataset, 2D detec-
tion on KITTI, additional ablations, and quantitative analy-
sis of SA-PlaceNet in the suppl.
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Figure 5. a) Ablation for object placement - For a background road
scene, we visualize the heatmaps of aggregated objectness scores
at each pixel location. Geometric augmentation and variational
inference help to generate diverse and plausible object placements.
b) Histogram of the distribution of orientations of the ground truth
bounding boxes and the generated bounding boxes.

Dataset. We use the KITTI [15] and NuScenes [3] datasets
for our experiments. KITTI consists of a total of 7481 real-
world images captured from a camera mounted on a car.
Following [6, 22, 46], we split the data into 3712 train and
3679 validation samples. For NuScenes, we use the official
split with 700 train scenes containing 28134 samples and
150 validation scenes containing 6019 samples.

4.1. Evaluation of Placement Model

The placement network is trained with RGB images from
the train split. We prepare the training data by inpainting
the moving objects using [38] and obtain a paired dataset
D = {I, Id,B} as detailed in Sec. 3.1. To visualize the
performance of the placement, we generate heatmaps over
the center of the bottom face of the bounding box in Fig. 4.
For visualization, we use the mean objectness score of the
anchor boxes corresponding to each grid cell. Geometry-
aware augmentation enables learning of a large region for
placing cars even though trained with input scenes with only
a few cars. This allows for the sampling of diverse physi-
cally plausible placement locations for a given input scene
shown as a set of 3D bounding boxes. We sample two sets
of boxes from the predicted distribution. The sampled boxes
have appropriate locations, scales, and orientations based
on the background road. We present a detailed quantitative
analysis of our method in the suppl. document.
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Figure 6. Ablation over rendering methods: Given the source im-
age and predicted 3D bounding boxes, we sample and render a
synthetic ShapeNet [5] car; Lift3D [22] rendered method; and our
realistic rendering. We show a smaller domain gap between the
rendered cars and the original samples.

Analysis. We analyze the impact of each component on
placement performance in Fig. 5a). The naive baseline of
directly training object placement without geometric aug-
mentation and variational modeling only learns a point esti-
mate and results in a few concentrated spots for placement
location. Adding the variational head for learning a dis-
tribution of boxes instead expands the space of plausible
locations but is still segregated in small regions. For the
variational head, we have fixed the alpha as 0.1. This high-
lights the sparse training signals for placement using ground
truth boxes. However, when coupled with the geometry-
aware augmentation, the predicted distribution covers a
large driveable area on the road. To further analyze the ori-
entations, we plot a histogram of predicted and the ground
truth orientations in Fig. 5b), where the predictions closely
follow the ground truth.

4.2. Evaluation of object renderings

We augment the road scenes by placing synthetic cars ren-
dered by several approaches in Fig. 6. We compare the ren-
dering quality of the proposed method with 1) ShapeNet
- 3D car assets renderings sampling from ShapeNet [5], 2)
Lift3D [22] - A generalized NeRF method for generating
3D car models. ShapeNet renderings result in unnatural
augmentations due to synthetic car appearance and domain
gaps from real scenes. On the other hand, Lift3D render-
ings, although realistic, lack diversity and suffer from ar-
tifacts. Our rendering method leverages conditional text-
to-image diffusion models and generates extremely realis-
tic cars that blend well with the background and are of high
fidelity. Additionally, as our rendering starts from an under-
lying 3D asset, we use it to render shadows in a synthetic
environment and copy the same shadow to the generated
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Figure 7. Qualitative comparison of the generated augmentations
with all the baseline methods. Our augmentations are highly re-
alistic, place cars following plausible placement properties, and
have a minimal domain gap from the training dist.

realistic renderings. The proposed rendering pipeline effec-
tively generates realistic augmentations and results in supe-
rior object detection performance (Tab. 1). Further, we re-
port FID of the generated augmentations with the real train-
ing set to evaluate the realism.

4.3. Improving 3D Object Detection

We evaluate the effectiveness of our augmentations for
monocular 3D object detection. We augment the training set
with the same number of images to prepare an augmented
version of the dataset. We compare our proposed augmen-
tation method with the following augmentation approaches:

Geometric Copy-paste (Geo-CP) [25]. We use instance-
level augmentation from [25], where cars from the train-
ing images are archived along with the corresponding 3D
bounding boxes to create a dataset. For augmenting a scene,
a car, and its 3D box parameters are sampled from the
dataset, and the car is pasted in the background.

Lift-3D [22] proposed a generative radiance field network
to synthetize realistic 3D cars. The generated cars are
then placed on the road using a heuristic-based placement.
Specifically, a placement location is sampled on the seg-
mented road, and other 3D bounding box parameters are
sampled from a predefined parameter distribution.

CARLA [10]. To compare the augmentations generated
by simulated road scene environments, we use state-of-the-
art CARLA simulator engine for rendering realistic scenes
with multiple cars. It can generate diverse traffic scenar-
ios that are implemented programmatically. However, it’s
extremely challenging for simulators to capture the true di-
versity from real-world road scenes and they often suffer



Table 1. Monocular 3D detection performance on KITTI dataset
a) MonoDLE[32] 3D@IOU=0.7 3D@IOU=0.5

Easy Mod. Hard Easy Mod. Hard
w/o 3D Augmentation 17.45 13.66 11.69 55.41 43.42 37.81

Geo-CP 17.52 14.60 12.57 58.95 44.23 38.66
CARLA 17.98 14.30 12.17 58.33 44.41 38.81
Lift3D 17.19 14.65 12.48 56.81 44.21 39.13
RBP 20.50 14.32 11.29 60.30 43.69 38.55
Ours 22.49 15.44 12.89 63.59 45.59 40.35

b) GUPNet[30] 3D@IOU=0.7 3D@IOU=0.5
Easy Mod. Hard Easy Mod. Hard

w/o 3D Augmentation 22.76 16.46 13.27 57.62 42.33 37.59
Geo-CP 21.81 15.65 13.24 59.12 44.03 39.16
CARLA 22.50 16.17 13.61 59.89 43.52 38.22
Lift3D 19.05 14.84 12.64 57.50 43.81 39.22
RBP 21.67 14.56 11.23 60.40 43.25 36.95
Ours 23.94 17.28 14.71 61.01 47.18 41.48

from a large sim2real gap.

Rule Based Placement (RBP). We create a strong rule-
based baseline to show the effectiveness of our learning-
based placement. Specifically, we first segment out the road
region with [16] and sample placement locations in this re-
gion. To get a plausible orientation, we copy the orientation
of the closest car in the scene, assuming neighboring cars
follow the same orientations. We used our our rendering
pipeline to generate realistic augmentations.

Qualitative comparison of generated augmentations are
shown in Fig. 7. Lift3D augmentations have cars placed in
incorrect orientation as the orientation is sampled from a
general predefined distribution. RBP and Geo-CP augmen-
tations are relatively better in terms of orientation but fail to
place cars in the correct lanes. The proposed augmentation
method follows the underlying grammar of the road well
and generates realistic scene augmentations.

4.3.1. Realistic augmentations improves 3D detection
We evaluate our augmentation technique on two state-of-
the-art monocular 3D detection networks - MonoDLE [32]
and GUPNet [30] in Tab. 1 on KITTI [15] dataset. We gen-
erate one augmentation per real image for all the baselines.
All the augmentation techniques improve over the baseline
for MonoDLE. However, gains from Lift3D, CARLA, and
Geo-CP are marginal. RBP performs better than other base-
lines primarily due to our realistic renderings. For GUP-
Net, none of the baselines can improve the detection perfor-
mance overall. Our method significantly improves the score
detection scores for both networks. This indicates a strong
generalization of our augmentations on various 3D object
detection models. We also show results on the current state-
of-the-art MonoDETR [55] in the suppl. document.

Table 2. Rendering ablation with fixed placement
Rendering 3D@IOU=0.7 3D@IOU=0.5

Easy Mod. Hard Easy Mod. Hard
w/o 3D Augmentation 17.45 13.66 11.69 55.41 43.42 37.81

ShapeNet 20.91 14.17 12.28 59.54 43.48 37.64
Lift3D 21.35 14.25 11.65 60.38 42.65 37.53

Ours (w/o shadow) 21.45 14.21 11.73 61.23 43.27 38.28
Ours 22.49 15.44 12.89 63.59 45.59 40.35

4.3.2. Impact of object rendering on 3D detection
Table 2 presents an ablation study of various rendering ap-
proaches for augmentation in 3D detection. All render-
ings, when used with our learned placement, significantly
outperform the baselines, demonstrating their compatibil-
ity with any rendering method. ShapeNet shows the low-
est performance due to limited synthetic car diversity and a
substantial sim2real gap. Lift3D rendering performs better
than ShapeNet but exhibits noticeable artifacts when cars
are close to the camera (Fig. 6). Our rendering approach,
which uses a generative text-to-image model, outperforms
all baselines but also enhances and achieves state-of-the-art
performance when combined with shadows.

4.3.3. Augmenting other object categories
Though the car is the major category in the road 3D de-
tection benchmarks, we also perform augmentation for two
additional categories of cyclists and pedestrians, given they
occur at 3.79% and 11.39% in the KITTI training set. For
simplicity, we integrate our placement method with copy-
paste rendering as described in the suppl. document (similar
to Geo-CP [25]). Note that we trained another placement
model to predict the placement of all the classes together.
We use the augmented dataset with renderings of cyclists
and pedestrians to train MonoDLE [32] object detector. The
results are shown in Tab. 3; our augmentation significantly
improves the detection performance of both categories over
the baselines. We show qualitative results for these classes
with copy-paste in the suppl. document.

Table 3. Augmenting multiple categories for 3D detection
Cyclist 3D@IOU=0.50 3D@IOU=0.25

Easy Mod Hard Easy Mod Hard
w/o 3D Augmentation 4.92 2.03 1.85 18.41 10.82 9.52

Ours 6.75 3.41 3.37 21.59 11.23 9.90
Pedestrian 3D@IOU=0.50 3D@IOU=0.25

Easy Mod Hard Easy Mod Hard
w/o 3D Augmentation 4.60 3.81 2.99 22.98 18.38 15.12

Ours 4.98 3.89 3.34 26.28 20.81 16.16

4.4. Experiments on large datasets
Table 4. Detection on NuScenes

FCOS3D [3] MAP NDS
w/o 3D Augmentation 0.3430 0.415

Lift3D 0.3211 0.371
Ours 0.3704 0.440

We validate the gen-
eralization of our
method by training
SA-PlaceNet on a
large driving dataset - NuScenes [3]. Our approach
produces plausible realistic augmentations for the given
scene (suppl.) and we show improved performance on
the NuScenes dataset with the FCOS3D [3] monocular
detection network in Tab. 4.

4.5. Computational Cost of MonoPlace3D
Training SA-PlaceNet for generating augmentation takes a
fraction of the time of the overall detection training. Specif-
ically, on the KITTI dataset, SA-PlaceNet takes 12 hours vs
20 hours for a 3D detector (GUPNet) on a single A5000



GPU. Similarly, on a larger nuScenes dataset, SA-PlaceNet
takes 32 hours vs 5 days for a 3D detector (FCOS3D). We
have provided additional details for computational require-
ments across configurations in suppl. document.

5. Conclusion
This work proposes a novel scene-aware augmentation tech-
nique to improve outdoor monocular 3D detectors. The core
of our method is an object placement network, that learns
the distribution of physically plausible object placement for
background road scenes from a single image. We utilize this
information to generate realistic augmentations by placing
cars on the road scenes with geometric consistency. Our re-
sults with scene-aware augmentation on monocular 3D ob-
ject detectors suggest that realistic placement is the key to
substantially improving the augmentation quality and data
efficiency of the detector. The primary limitation of our
approach is the dependency on the off-the-shelf inpainting
method for data preparation for the training of the place-
ment network. Also, our current framework does not con-
sider more nuanced appearance factors in augmentations
such as the lighting of the scene. In conclusion, we pro-
vide important insights for designing effective scene-based
augmentations to improve monocular 3D object detection.
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A. Additional placement results
A.1. Quantitative evaluation
To quantify the performance of placement, we compute the
following three metrics on the training set of KITTI: 1)
Overlap: As road regions can cover most of the plausi-
ble locations for cars, we evaluate the predicted location by
checking whether the center of the base of the 3D bounding
box is on the road. Specifically, we compute the fraction of
boxes that overlap with the road segmentation obtained us-
ing [16]. 2) θKL: We evaluate the KL-divergence between
the distribution of orientation of the predicted 3D bounding
box and the ground truth boxes. We present quantitative re-
sults in Tab. 5, where our method achieves superior overlap
scores, suggesting the superiority of placement.

Table 5. Ablation over SA-PlaceNet components
Method Random w/o var & geo w/o geo w/o var Ours

Overlap ↑ 0.20 0.15 0.17 0.35 0.36
θKL ↓ 1.37 0.66 1.18 0.32 0.30

A.2. Placement on nuScenes [3] dataset
We validate the generalization of our method by train-
ing SA-PlaceNet on a subset of a recent driving dataset -
NuScenes [3] in Fig. 8. We visualize predicted 3D bound-
ing boxes and realistic renderings from our method. Our
approach produces plausible placements and authentic aug-
mentations for the given scene.

Source Image Sampled 3D boxes Augmented Scene

Figure 8. Placement on nuScenes [3] dataset.

A.3. Controlling traffic density in scenes
Our augmentation method enables us to control the traffic
density of vehicles in the input scenes by controlling the
number of bounding boxes to be sampled. We present re-
sults for generating low-density (1−3 cars added) and high-
density (3− 5 cars added) traffic scenes in Fig. 9.

A.4. Placing other categories
Our method enables us to learn placement for other cate-
gories from KITTI datasets. Specifically, we trained a joint
placement model to learn the distribution of 3D bound-
ing boxes for cars, pedestrians, and cyclists. To render
the pedestrians and cyclists, we leverage simple copy-paste
rendering as discussed in Sec. F.1. We present place-
ment results in additional categories in Fig. 10. The pro-
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This figure is for different outputs for a single input image. Given a RGB image, we have to generate three variations with 
different density. We will sample different number of cars for density and render using repaint by example for high 
realism.--

Figure 9. Augmented training dataset for 3D object detection:
Given a sparse scene with few cars, we place cars at the predicted
3D bounding box locations using our rendering algorithm. We
present two sets of results, one with low density (1−3 cars added)
and another with high density (4− 5 cars added) for each scene.

posed method predicts plausible locations, orientation, and
shape of the object, enabling rich scene augmentations. Us-
ing these augmentations for training leads to significant
improvement in performance for less frequent cyclist and
pedestrian categories (Tab.3 main paper).
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Figure 10. Placement results for pedestrian and cycle categories on
KITTI dataset. Note that we applied copy-paste in the predicted
3D object box locations to generate the augmentations. Though
copy-pasting causes image artifacts, these augmentations still im-
prove 3D detection performance, as shown in the main paper.

B. Additional object detection results
B.1. Monocular 3D detection in indoor scenes
Our proposed method is generalizable for 3D detection in
indoor environments. To demonstrate this, we performed a
preliminary experiment involving monocular 3D detection
on SunRGBD [58] dataset. We adapt our placement net-
work building on an indoor detection network -

Table 6. Indoor 3D detection
config. mAP@0.25

ImVoxelNet - w/o 3D augm. 0.410
ImVoxelNet - w ours 0.430

ImVoxelNet [39].
We used copy-
paste along with
the predicted
object locations to
generate data augmentations. The generated augmentations
are highly effective and improve upon the monocular 3D

detection performance, as shown in Tab. 6. This indicates
the superior generalization of our method for diverse envi-
ronments. We believe a detailed exploration of our work
for indoor environments is a promising future direction.

B.2. Improving 2D object detection
As our approach provides consistent 3D augmentations, it
also enables to improve the performance of 2D object detec-
tors. Specifically, our placement model also predicts the 2D
bounding box along with the 3D bounding box (followed in
most of the 3D detection works). We use these predicted

Table 7. 2D Detection Perfor-
mance on ‘Car’ category with
CenterNet [59]

config. AP2D@IOU=0.5
Easy Mod. Hard

w/o 3D Aug. 86.03 73.74 65.08
Ours 89.56 76.79 72.28

2D bounding box an-
notations to obtain a
labeled 2D detection
dataset. We eval-
uate the gains from
our augmentations on
2D object detection on
off-the-shelf 2D detec-
tor CenterNet [59] in
Tab. 7. Following [42], we use a standardized approach to
report AP40 metric instead of the AP11 for evaluation. No-
tably, our proposed augmentation method, though designed
for 3D detection, can also improve the performance of 2D
object detection, proving the task generalization of the pro-
posed approach.

B.3. 3D object detection on BEV based detector
Our method generalizes to BEV-based detection, as our
placement model predicts 3D bounding boxes in the world

Table 8. Detection on BEV based
3D detector DeTR3D

config. NDS mAP
Detr3D - w/o 3D augm. 0.434 0.349

Detr3D - w ours 0.451 0.381

coordinate space.
We train BEV-based
DeTR3D on multi-
view nuScenes,
augmenting individual
camera views by
placing our 2D car
renderings in non-overlapping image regions. Since over-
lapping regions are mostly confined to the peripheries of
adjacent camera views [29], our augmentations effectively
improve detection performance (Tab. 8). For overlapping
image regions, a possible solution is to use 3D cars and
render consistent multi-views for placement.

B.4. 3D object detection on MonoDETR [55]
To validate the generalizability of our approach, we eval-
uate proposed 3D augmentation on a recent 3D monocu-
lar detection model MonoDETR [55] on the KITTI dataset
in Tab. 9. We report the baseline results without our aug-
mentation from the original paper. Our method consistently
outperforms the baseline in all three settings. The compre-
hensive evaluation across several detectors (also in the main
paper) evidently shows the generalization of our proposed



3D augmentation method.

Table 9. 3D Detection Performance on Car with MonoDETR [55]

MonoDETR 3D@IOU=0.7 3D@IOU=0.5
Easy Mod. Hard Easy Mod. Hard

w/o 3D Augmentation 28.84 20.61 16.38 68.86 48.92 43.57
Geo-CP 23.26 16.41 14.58 60.65 43.93 37.71
Lift3D 22.00 16.61 14.59 63.45 47.34 38.57
RBP 24.92 17.75 15.90 61.99 44.02 38.04
Ours 29.90 21.91 16.85 69.63 49.10 43.63

B.5. Effect of Poisson Blending
We use Poisson blending to enhance the quality of the com-
position of synthetic cars with the background scene. We
observe a slight dip in the detection performance using the
obtained augmentations as reported in Tab. 10. A similar
observation was made in [57], where improved blending
does not positively affect the detection performance.

Table 10. Monocular 3D detection performance of Poisson Blend-
ing on our Rendering on KITTI [6] validation set.

(a) MonoDLE[32] on Car with and without Poisson Blending

Rendering 3D@IOU=0.7 3D@IOU=0.5
Easy Mod. Hard Easy Mod Hard

w/o 3D Aug. 17.45 13.66 11.69 55.41 43.42 37.81
Ours 22.49 15.44 12.89 63.59 45.59 40.35

Ours (+Poisson) 21.34 14.44 12.81 59.60 44.11 38.15
(b) GUPNet[30] on Car with and without Poisson Blending

Rendering 3D@IOU=0.7 3D@IOU=0.5
Easy Mod. Hard Easy Mod Hard

w/o 3D Aug. 22.76 16.46 13.27 57.62 42.33 37.59
Ours 23.94 17.28 14.71 61.01 47.18 41.48

Ours (+Poisson) 22.43 17.03 14.55 60.00 45.28 39.60

Table 11. Analysis of Training Time
Model Dataset Training Time #GPU’s GPU Model

SA-PlaceNet KITTI 12h 1 A5000
SA-PlaceNet NuScenes 32h 1 A5000

GUPNet Original KITTI 20h 1 A5000
GUPNet Augmented KITTI 22h 1 A5000
FCOS3D Original NuScenes 5d18h 2 A5000
FCOS3D Augmented NuScenes 6d 2 A5000

C. Computational cost of MonoPlace3D
Training of SA-PlaceNet takes a fraction of the time of the
detection training. The relative training time is significantly
reduced for large datasets such as NuScenes. We present the
computational requirements of our augmentation in com-
parison to the training time in Table 11. We train GUPNet
and MonoDLE for an additional 10 epochs and FCOS3D for
an additional 5 epochs when training with our augmented
data.

C.1. Data Efficiency on KITTI
In this section, we demonstrate the data efficiency of our
method. As observed in Tab.12 our method can significantly

Table 12. Data efficiency of SA-PlaceNet on KITTI dataset

MonoDLE 3D@IOU=0.7 3D@IOU=0.5
% Real Data % Aug. Data Easy Mod. Hard Easy Mod. Hard

10 10 4.94 3.90 3.26 27.21 21.03 18.06
25 25 13.38 9.78 8.23 48.28 36.99 30.83
50 50 20.46 13.70 11.71 58.04 43.83 37.87
75 75 21.53 14.95 12.38 60.94 45.19 39.99

100 100 22.49 15.44 12.89 63.59 45.59 40.35
100 0 17.45 13.66 11.69 55.41 43.42 37.81

reduce the dependence on real data when training monocu-
lar detection networks. Specifically, augmenting just 50 %
of the real data can achieve better performance than training
with 100 % of the original training data.

C.2. Scalability of generated augmentations
To evaluate the effectiveness of the scale of our augmen-
tations, we perform a scalability experiment on a large
nuScenes dataset consisting of ≈ 35K images. We use
different fractions of real and augmented data to train a
monocular 3D detector and achieve consistent gains across
the amount of data.

Table 13. Scaling on NuScenes dataset

% Data mAP (w/o aug) mAP (ours) NDS (w/o aug) NDS (ours)
15 0.131 0.151 0.223 0.239
30 0.231 0.253 0.311 0.339
50 0.310 0.342 0.392 0.411
100 0.343 0.371 0.415 0.440

C.3. Rendering Ablation on NuScenes
We also present an ablation study of various rendering ap-
proaches for augmentation in 3D detection for NuScenes.
All renderings, when used with our learned placement, out-
perform the baseline, demonstrating the compatibility of
our placement with different rendering methods.

Table 14. Ablation on NuScenes

FCOS3D [3] MAP NDS
w/o 3D Augmentation 0.3430 0.415

ShapeNet 0.3441 0.414
Lift3D 0.3460 0.416
Ours 0.3704 0.440

D. Data Augmentation for Corner Cases
We aim to approximate the training data distribution p(x),
with a learned distribution qθ(x), which can be sampled
(x ∼ qθ(x)) to generate augmentations. In principle,
our approach can also model abnormal cases by learn-
ing a distribution to approximate the conditional distri-
bution p(x|state =‘abnormal’). During inference from
SA-PlaceNet we sample the least likely positions from
the learned distribution to simulate corners cases for au-
tonomous driving . We augment the training data with these



corner cases and train MonoDLE [32] . In Fig 11 we show
qualitatively how training with our data can improve the
model performance on corner cases .
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Figure 11. Detection improvement in corner cases.

E. Implementations details

E.1. Placement data Preprocessing
We use the state-of-the-art Image-to-Image Inpainting
method [38] to remove vehicles and objects from the KITTI
dataset [15]. The input prompt ‘inpaint’ is passed to the in-
painting pipeline. A few outputs from this method can be
seen in Fig. 12

Source Image Inpainted Image

Figure 12. Outputs generated from Stable Diffusion Inpainting
pipeline [38]. These inpainted images are used for training our
placement model.

E.2. Baseline methods
Geometric Copy-paste (Geo-CP). To augment a given
scene, a car is randomly sampled from the database, and its
3D parameters are altered before placement. Specifically,
the depth of the box (z coordinate) is randomly sampled,
and corresponding x and y are transformed using geometric
operations. Other parameters, such as bounding box size
and orientation, are kept unchanged. The sampled car is
then pasted using simple blending on the background scene.
CARLA [10]. To compare the augmentations generated
by simulated road scene environments, we use state-of-the-
art CARLA simulator engine for rendering realistic scenes
with multiple cars. It can generate diverse traffic scenar-
ios that are implemented programmatically. However, it’s
extremely challenging for simulators to capture the true di-

versity from real-world road scenes and they often suffer
from a large sim2real gap.
Rule Based Placement (RBP). We create a strong rule-
based baseline to show the effectiveness of our learning-
based placement. Specifically, we first segment out the road
region with [16] and sample placement locations in this re-
gion. To get a plausible orientation, we copy the orientation
of the closest car in the scene, assuming neighboring cars
follow the same orientations. We used our proposed render-
ing pipeline to generate realistic augmentations.
Lift-3D [22] proposed a generative radiance field network
to synthetize realistic 3D cars. Lift3D trains a conditional
NeRF on multi-view car images generated by StyleGANs.
However, the car shape is changed following the 3D bound-
ing box dimensions. The generated cars are then placed on
the road using a heuristic based on road segmentation. We
used a single generated 3D car provided in the official code
to augment the dataset as the training code is unavailable.
Specifically, road region is segmented using off-the-shelf
drivable area segmentor [16]. Next, the 3D bounding box
of cars is sampled from a predefined distribution of box pa-
rameters as given in Tab.15, and the ones outside the driv-
able area are filtered out. For a sampled 3D bounding box
parameters b=[bx, by, bz, bw, bh, bl, bθ], we render the car at
adjusted orientation angle θ̃ using Eq. 7. We place the cam-
era at the fixed height of 1.6m, with an elevation angle of
0. Also, we used (bw, bh, bl) to render the car of a particu-
lar shape. We render the car image for 512x512 resolution
using volume rendering and the defined camera parameters.
Along with the RGB image, Lift3D also outputs the seg-
mentation mask for the car which is used to blend it with the
background. Fig. 13 shows some sample renderings from
Lift3D.

Figure 13. Sampled views rendered from Lift3D [22].

F. Rendering details

F.1. Copy-Paste

In simple copy-paste rendering, the cars from the training
corpus are added to the predicted 3D bounding boxes. We
extract cars of various orientations from the training set im-
ages through instance segmentation using Detectron2 [51].



Table 15. Preset distribution of bounding boxes. Lift3D [22] sam-
ples bounding boxes from the predefined parameter distribution.

Pose Distribution Parameters
x Uniform {[−20m, 20m]}
y Gaussian µ = height, σ = 0.2
z Uniform {[5m, 45m]}
l Gaussian µ = lmean , σ = 0.5
w Gaussian µ = wmean , σ = 0.5
h Gaussian µ = hmean , σ = 0.5
θ Gaussian µ = ±π/2, σ = π/2

Copy-Paste Car Binary Mask

Figure 14. Sample cars from the Copy-Paste Database

These cars are archived in a database with their correspond-
ing 3D orientation and binary segmentation mask data. Dur-
ing inference, given a 3D bounding box, we query and
search for cars whose orientation closely aligns with the
given 3D box orientation. A certain degree of randomness is
introduced in selecting the nearest-matching car, contribut-
ing to increased diversity and seamless integration with the
input scene. Next, we compose the retrieved car image onto
the background scene using the 2D-coordinated obtained
from the 3D bounding box and the binary mask. This sim-
ple rendering essentially captures the diverse cars present in
the training dataset and helps in generating scenes that are
close to training distribution. However, such rendering has a
problem with shadows as the composition is not 3D-aware,
given the placed cars are stored as images.

F.2. ShapeNet
ShapeNet [5] is a large-scale synthetic dataset that pro-
vides 3D models for various object categories, including
cars. The ShapeNet Cars dataset focuses specifically on
providing 3D models of different car models from vari-
ous viewpoints. We leverage the high diversity of cars
(nearly 7500 models) in the dataset and render the cars at
the predicted box locations with 3D bounding box parame-
ters using Blender [8] software. We employ a random sam-
pling technique to select a 3D car model from this exten-
sive dataset, which is then loaded in the Blender [8] envi-
ronment. To ensure consistency in the car shapes, we ini-
tially calculated the average dimensions of the cars within

Figure 15. Sample of ShapeNet [5] cars rendered at different
views.

the dataset. We exclude any car model with dimensions ex-
ceeding 50% of the computed average, and we repeat this
random sampling procedure until the specified conditions
are satisfied. Following that, we align and render the car
by a 3D rotation angle. Specifically, as the orientation an-
gle θ is defined in 3D, using it directly to render the image
does not take care of perspective projection. Eg. all the cars
following a lane will have similar orientation angles (close
to zero) but look visually different when projected on the
image as shown in Fig. 16. Both the rendered cars have 0
orientation angle in 3D but when projected onto the image
planes, the rendered orientation changes with the location.
To this end, we adjust the car orientation by a correction
factor to incorporate the perspective view, as described in
equation (7),

θ̃ = θ + tan−1(
x

z
) (7)

where x and z are the respective 3D coordinates of the
bounding box. We use the final corrected θ̃ value for ren-
dering the ShapeNet car. We render car images at 512x512,
with a white background, which can be later used as a seg-
mentation mask to blend the rendered image. A few exam-
ples of the ShapeNet cars rendered with different orienta-
tions are visualized in Fig. 15.

Figure 16. Perspective and Absolute projection of cars with the
same 3D orientation.

F.3. Reaslistic rendering with Text-to-image models.
We leverage a state-of-the-art image-to-image translation
method based on the powerful StableDiffusion model [53]
to convert the synthetic ShapeNet renderings into realis-
tic cars. We use edge-conditioned ControlNet [53], which
takes an edge image and a text prompt to generate images
following the edge map and the prompt. Specifically, we
utilize a canny edge detector to create edge maps for syn-
thetic car images rendered using ShapeNet [5], preserv-



ing the car’s structure while maintaining its original ori-
entation and scale. These edge maps, generated through
the Canny Edge Detection algorithm [4], serve as input for
the edge-conditioned ControlNet [53], enabling the render-
ing of realistic cars using the prompt ‘A realistic car on
the street’. Furthermore, given an edge map and hence a
ShapeNet-rendered car, we can obtain various realistic ren-
derings at each iteration, facilitating diverse scene gener-
ations (Fig. 17). We further enhance ControlNet’s back-
bone diffusion model using LoRA [17] on a subset of ‘car’
images from the KITTI dataset. This process enables the
generation of natural-looking car versions that seamlessly
blend with the background scene. Finally, we integrate the
ControlNet-rendered car and its shadow base into the pre-
dicted location within the scene to achieve a realistic ren-
dering.

ControlNet

Edge image Diverse realistic cars

‘A realistic car on 
street’

Shadow

Rendering Shadows for 3D assets in Blender

a)

b)

Figure 17. a) Diverse renderings generated with edge-conditioned
ControlNet. B) Shadows are generated by rendering 3D assets
with a point light source in the blender [8] environment

F.4. Rendering shadows in Blender [8]
To generate a realistic composition of the augmented
cars, we generate realistic shadows for cars using the
ShapeNet [5] dataset and rendered with Blender. We mod-
ify the rendering method to generate shadows by introduc-
ing a 2D mesh plane beneath the car base and adding a
uniform ‘Sun’ Light source along the z-axis of the blender
environment, placed at the top on the z-axis of the car
(Fig. 17). Additionally, we introduce slight variations
across all axes for the light source position. Once the cars
are positioned within the Blender [8] environment with suit-

able orientation, we render the entire scene while setting
both the car and the 2D plane as transparent. This method
enables us to create a collection of shadow renderings with
a transparent background for each car in the placement set-
ting.
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